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SYNOPSIS 

When surface-barrier effects are not taken into account, computation of diffusion coefficients 
from data obtained under finite bath conditions can lead to error. A technique is given by 
which the most probable diffusion coefficient and the most probable dimensionless surface 
barrier parameter simultaneously can be estimated for diffusant uptake by solid polymeric 
cylinders. 0 1993 John Wiley & Sons, Inc. 

INTRODUCTION 

Under certain limiting assumptions, uptake of dif- 
fusants from finite baths by cylindrical polymeric 
solids can be described by use of the various diffusion 
equation solutions of Wilson, Crank, Carman- 
Haul, and Urbanik.4 

Wilson’s Equation 

4a(l + a)exp[-qi(Dt/r2)] 
- 1 -  2 (1) 

Mt -- 

M ,  n=l 4 + 4a + a2q; 

In eq. ( l), M J M ,  is the fractional equilibrium up- 
take of diffusant by the cylinder, i.e., diffusant up- 
take at  a given time, M t ,  and at equilibrium, M ,  . 
The dimensionless parameter, Dt/r2, consists of the 
diffusion coefficient, D ( cm2/s), the uptake time, t 
(s)  , and the radius of the cylinder, r (cm) . The alpha 
term is a measure of equilibrium bath exhaustion: 

where equilibrium exhaustion, E,, is 

co - c, 
CO 

E ,  = ( 3 )  
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where Co and C ,  are, respectively, the initial and 
equilibrium concentration of diffusant in the exter- 
nal medium. In eq. (l), the 4;s are the positive, 
nonzero roots of 

in which Jo and J1 are zero- and first-order Bessel 
functions. 

When bath exhaustion is very high, convergence 
of Wilson’s equation requires an exceedingly high 
number of summation terms for small values of Dt/  
r2 and can result in a significant decrease in accu- 
racy. For this reason, the error function equations 
of Crank, Carman-Haul, and Urbanik are much 
more reliable when bath exhaustion is high and Dt/ 
r 2  is low. 

Crank’s Equation 

( 5 )  
Mt - 4(1 + a)[l - exp(X’)erfc(X)] 
Ma 4 + a  
-- 

where “erfc” is the error function complement and 
X is 

The equation of Carman and Haul is a slight im- 
provement over that of Crank for small values of 
Dt/r2.  
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Carman and Haul’s Equation 

where 

and 

The “ X  ” and “Y” terms of the equation of Carman 
and Haul are 

Urbanik’s equation, although somewhat more 
complex, is an improvement over the equations of 
Crank and Carman-Haul. 

- 1  Mt 
M ,  
-- 

2(1  + a)exp(-BT) exp(Y2T)erfc\/Y2T [ 1 - B / Y 2  
+ 

a ( X -  Y) 

- exp ( X  2T) e r f c w T  
1 - B / X 2  

X 
X 2 - B  Y 2 - B  

X e x p ( B 2 T ) e r f c w T  (12) I 
where the constant “B” is an empirical parameter, 
having a value of 8.42. In addition, the parameters 
“ X ”  and “Y” are 

(13) 
4 + a - f ( 4  + a)’ + 16a2(B - 1 . 5 0 )  

4a 
X =  

4 + a + v(4 + a ) 2  + 16a2(B - 1.5vB) 
Y =  (14) 4a 

Urbanik’s equation is quite valuable since it can be 
used for essentially all values of bath exhaustion 
and dimensionless time-a limitation of the equa- 
tions of Crank and Carman-Haul. 

Nevertheless, no matter which of the diffusion 
equation solutions given above that one uses, it is 
essential that certain assumptions about the system 
that one is investigating be fulfilled. Assumptions 
that are necessary for proper use of the analytical 
solutions to the diffusion equation given above are 
the following: 

1. The diffusion coefficient is a constant, con- 
centration-independent quantity. 

2. The equilibrium distribution coefficient of the 
diffusant between the solid sorbant and the 
external bath is linear for a wide range of 
concentrations. 

3. The solid sorbant is a morphologically stable, 
homogeneous endless cylinder. 

4. No surface barrier exists at the cylindrical 
surface that would impede mass transfer of 
the diffusant from the external medium to 
the sorbant sur€ace, Le., no diffusional 
boundary layer exists. 

When all four assumptions given above are satisfied, 
eq. f 1 ), (5), ( 7) ,  or ( 12) can be solved iteratively 
for the diffusion coefficient, D, from a knowledge of 
a, M J  M ,  at  a corresponding time, t , and the radius 
of the polymeric solid cylinder, r .  It is unfortunate 
that the four assumptions listed above rarely hold 
for real sorption systems. Quite often it is found 
that, even when the first three assumptions given 
above are found to hold, the flow of an external bath 
past the surface of the polymeric cylinders may be 
so very inefficient that a diffusional boundary layer 
develops at  the cylindrical surface. 

In the case of infinite bath systems, i.e., systems 
in which the concentration of diffusant in the ex- 
ternal medium does not change during sorption of 
the diffusant by the polymeric cylinder, the bound- 
ary layer influence can be taken into account by the 
use of the equation of Newman? 

Newman‘s Equation 

The equation of Newman can be written more con- 
cisely as 

where the fin’s are the roots of the transcendental 
equation: 
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in which Jo and J1 again are zero- and first-order 
Bessel functions, and the dimensionless parameter, 
L ,  is defined by6 

where D, and D are the diffusion coefficients of the 
diffusant in the external medium and polymer, re- 
spectively; K ,  the equilibrium distribution coefficient 
of the diffusant between the external medium and 
the polymer; r ,  the radius of the cylinder; and 60, 
the thickness of the diffusional boundary layer-a 
quantity that is inversely proportional to the rate 
of flow of the external medium past the surface of 
the polymeric cylinder. When the rate of flow of the 
external medium is very high, the thickness of the 
diffusional boundary layer approaches zero and the 
value of “L” approaches infinity. When the value 
of “L” is infinity, the term Pi /L2  drops out and eq. 
( 15) becomes equivalent to Hill’s e q ~ a t i o n . ~  

Hill’s Equation 

“ 4  Mt 
M m  ,,=I P n  

- 1 - 5 exp[ -/3X(Dt/r2)] (18) -- 

In eq. ( 19), the positive transcendental Bessel roots 
are expressed by the simpler equation: 

bath conditions, (MJM, )  = fm, and fractional sat- 
uration uptake for infinite bath conditions, ( M t /  
M,) = faat. The two quantities are related to each 
other for a given value of a by 

afca 

l + c w - f m  
fsat = 

Under the assumption that all fractional uptake 
values for a finite bath system can be treated as if 
they were transitional values, dimensionless values 
of time, ( D t / r 2 ) o ,  can be estimated for each value 
of Mt / Mm for given values of a and L by 

where ( D t / r 2 ) 1  is the value of dimensionless time 
calculated by the use of eq. (l), (5), (7) ,  or (12) 
for a given value of f m  and a when L equals infinity; 
(Dt / r2 )2  is the value of dimensionless time calcu- 
lated by the use of eq. ( 15) for corresponding values 
of fsat and a given value of “L,” when alpha equals 
infinity, and ( D t / r 2 ) 3  is dimensionless time calcu- 
lated by the use of eq. ( 18) for corresponding values 
of fsat when both a and L are equal to infinity. Hou 
et a1.12 used eq. (21) to prepare a series of tables of 
D t / r 2  for various equally spaced values of M t / M m  
for several values of fractional equilibrium exhaus- 
tion, Em,  and dimensionless boundary layer, L. 
These tabular values are useful not only for inter- 
polation but also for the development of analytical 
approximations that will permit the direct compu- 
tation of M t / M m  from a knowledge of D t / r 2 ,  a, 
and L.  

NEW COMPUTATIONAL TECHNIQUE 
STATISTICAL ANALYSIS 

In view of the fact that no analytical solution to the 
diffusion equation exists in equation form that ex- 
presses M t / M ,  as a function of D t / r 2 ,  a,  and L ,  a 
computational technique recently has been proposed 
to fill this mathematical The details of the 
computational procedure are given elsewhere, but 
may be summarized briefly as follows: Linear tran- 
sitional systems are characterized by linear sorption 
isotherms and constant, concentration-independent 
diffusion coefficients. These systems are transitional 
if they are capable of changing from infinite bath to 
finite bath systems during the course of diffusant 
uptake. Such systems are distinguished from other 
sorption systems by having two forms of fractional 
diffusant uptake at  the point of transition.” The 
two forms are fractional equilibrium uptake for finite 

Equation (21) is useful for the estimation of diffu- 
sion coefficients based on data obtained under finite 
bath, boundary layer conditions. However, although 
experimental parameters such as equilibrium bath 
exhaustion, Em, and fractional uptake, M t / M m ,  at  
a given time, t , can be measured, the dimensionless 
boundary layer parameter, L ,  cannot be measured 
directly. In the absence of knowledge of the value 
of L ,  no estimate of the diffusion coefficient can be 
computed. Nevertheless, a statistical technique can 
be used in combination with eq. (21) to make a si- 
multaneous estimate of the most probable diffusion 
coefficient and the most probabb boundary layer pa- 
rameter, L. The statistical method, which has been 
applied previously to infinite bath systems, l3 is il- 
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lustrated for a finite bath, boundary layer system by 
the example to follow. 

Real Systems 

Sorption of pure Disperse Red 11 by stabilized 
poly (ethylene terephthalate) fiber under very effi- 
ciently stirred infinite bath conditions has been 
shown to be characterized by a constant diffusion 
coefficient and a linear sorption i~otherm. '~ Based 
on parameter estimates given elsewhere, l1 sorption 
of this dye at 125°C at a concentration of 0.25% 
based on the weight of the fiber will occur under 
finite bath conditions when the liquor-to-fiber ratio 
is 10/1. Under these conditions, the disperse dye is 
completely dissolved in the aqueous medium and 
the fractional equilibrium bath exhaustion, Em,  is 
equal to 0.84. Fractional dye uptake, M , / M , ,  as a 
function of time in minutes can be monitored con- 
tinuously by the use of suitable spectrophotometric 
measurements made on the aqueous solution of the 
disperse dye. In view of the usual experimental vari- 
ation that occurs in such measurements, the Monte 
Carlo estimates of M J M ,  given in Table I as a 
function of time are not unreasonable. The data 
given in Table I are for a poorly stirred dyeing system 
in which the value of L is unknown. 

Application of eq. ( l ) ,  (5 ) ,  ( 7 ) ,  or (12) to the 
row data of the first two columns of Table I results 
in the corresponding diffusion coefficients of column 
three. It is seen that the computed diffusion coeffi- 
cients of column three increase with increasing val- 

ues of time, or M , / M , ,  and result in a very high 
coefficient of variation-even though it is known 
that the diffusion coefficient is constant for the dye/ 
fiber system investigated. It is clear that the use of 
the conventional finite bath diffusion equation so- 
lutions, which assume a value of infinity for L or a 
value of zero for 1/L,  can lead to error when L is 
not equal to infinity. 

When eq. (21) is applied to the data of Table I 
for increasing values of 1/L, it is revealed that the 
coefficient of variation of the diffusion coefficient 
decreases, approaches a minimum, and then begins 
to increase again. This phenomenon is graphically 
illustrated in Figure 1 for the values given in Table 
I and for other values not listed. 

The value of 1/L that results in the minimum 
coefficient of variation of the diffusion coefficient 
can be determined either graphically from Figure 1 
or by the use of numerical methods. The latter tech- 
nique reveals that the value of 1 /L  that results in 
a minimum value of %CV is 0.02585, or L = 38.7. 
The mean diffusion coefficient determined at this 
value of 1/L is 4.11 X lo-" cm2/s with a %CV of 
6.44. The parameter estimate" for the diffusion 
coefficient of Disperse Red 11 obtained under infinite 
bath conditions by the use of eq. (18) when E ,  = 0 
and L = infinity is 3.90 X lo-" cm2/s. The two 
values closely agree and are significantly higher than 
the mean value of 2.75 X lo-" cm2/s given for the 
data of column three in Table I. The improper ap- 
plication of the conventional finite bath diffusion 
equation solutions to systems having a boundary 

Table I 
of 1/L (Radius of Fiber = 1.063 X lo-' cm) 

Diffusion Coefficient, D X 10-l' cm2/s, as a Function of MJM- and Time for Various Values 

I) Values for 1/L of 
Time 
(min) MJMm 0.00 0.01 0.02 0.025 0.03 0.04 0.05 

0.5 
1 
2 
4 
6 
8 

10 
15 
20 
30 
40 
50 
60 

Mean 

%CV 

0.200 
0.331 
0.442 
0.595 
0.650 
0.717 
0.735 
0.815 
0.834 
0.892 
0.921 
0.940 
0.954 

1.03 
1.79 
2.02 
2.74 
2.60 
3.04 
2.76 
3.32 
2.91 
3.29 
3.37 
3.41 
3.45 

2.75 

26.74 

2.10 
2.84 
2.84 
3.45 
3.18 
3.59 
3.22 
3.75 
3.25 
3.59 
3.63 
3.66 
3.67 

3.29 

14.26 

3.09 
3.84 
3.63 
4.14 
3.74 
4.13 
3.68 
4.17 
3.60 
3.90 
3.90 
3.85 
3.89 

3.81 

7.50 

3.57 
4.32 
4.02 
4.48 
4.01 
4.40 
3.91 
4.38 
3.77 
4.05 
4.04 
3.95 
4.00 

4.07 

6.44 

4.04 
4.80 
4.40 
4.82 
4.29 
4.66 
4.14 
4.59 
3.94 
4.19 
4.17 
4.06 
4.11 

4.32 

6.93 

4.96 
5.73 
5.14 
5.48 
4.83 
5.18 
4.59 
5.01 
4.28 
4.50 
4.44 
4.31 
4.35 

4.83 

9.69 

5.85 
6.64 
5.87 
6.13 
5.36 
5.70 
5.03 
5.42 
4.62 
4.80 
4.71 
4.62 
4.59 

5.33 

12.55 
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 

1 /L 
Figure 1 Coefficient of variation ( WCV) of the diffusion coefficient as a function of 1/L. 

layer influence will result in an underestimation of 
the diffusion coefficient. The underestimation can 
be much more severe than that revealed in this 
study. 

As shown in Figure 2, the trend line produced 
when the diffusion coefficient is plotted vs. the frac- 

tional dye uptake has a slope of zero at  the optimum 
value of L ,  indicating the statistical constancy of 
the diffusion coefficient. However, a positive slope 
is observed when L = infinity and a negative slope 
is revealed when L is much lower than the optimum 
value. 

7.OE-11 
A 

c: A E - i  i c 

c. 6 5.OE-11 

E 

0 

.- 
0 

4.OE-11 

1 .OE-11 

0.0' I I I I 1 I I I  
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Fractional Uptake 
Figure 2 
function of M J M ,  for optimum and nonoptimum values of L.  

Trend lines produced when the calculated diffusion coefficient is plotted as a 
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CONCLUDING REMARKS 

The assumption that no diffusional boundary layer 
exists for diffusant sorption from finite baths may 
not hold for real experimental systems-even when 
the rate of flow of the external bath appears to be 
sufficiently high to eliminate boundary layer influ- 
ences. Sorption or desorption of diffusants by poly- 
meric cylinders under finite bath, boundary layer 
conditions can be described by the use of eq. (21). 
The statistical technique presented can be coupled 
with the results of the computations made with eq. 
(21 ) to estimate the diffusion coefficient and the 
dimensionless boundary layer parameter simulta- 
neously. 
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